Project Title	Funding	Strategic Plan Objective	Institution
ACE Center: Neural assays and longitudinal assessment of infants at very high risk for ASD	\$173,955	Q1.L.A	University of California, Los Angeles
Cortical activation to faces and objects in infants at high-risk for ASD	\$51,705	Q1.L.A	University of South Carolina
Autism: Social and communication predictors in siblings	\$723,431	Q1.L.A	Kennedy Krieger Institute
Predicting autism through behavioral and biomarkers of attention in infants	\$34,688	Q1.L.A	University of South Carolina
nfants at risk of autism: A longitudinal study	\$551,100	Q1.L.A	University of California, Davis
cMRI in infants at high risk for autism	\$419,567	Q1.L.A	Washington University in St. Louis
Early social and emotional development in toddlers at genetic risk for autism	\$354,246	Q1.L.A	University of Pittsburgh
Divergent biases for conspecifics as early markers for autism spectum disorders	\$213,420	Q1.L.A	New York University
A network approach to the prediction of autism spectrum disorders	\$176,592	Q1.L.A	Indiana University
MRI studies of early brain development in autism	\$468,100	Q1.L.A	University of California, San Diego
Predicting the decline of social attention in infants at risk or autism	\$179,388	Q1.L.A	University of California, Los Angeles
ACE Network: Early biomarkers of autism spectrum disorders in infants with tuberous sclerosis	\$2,604,574	Q1.L.A	Boston Children's Hospital
ACE Center: The ontogeny of social vocal engagement and its derailment in autism	\$159,324	Q1.L.A	Emory University
Are autism spectrum disorders associated with leaky-gut at an early critical period in development?	\$292,221	Q1.L.A	University of California, San Diego
Neurobehavioral research on infants at risk for SLI and autism	\$588,872	Q1.L.A	Boston University
EEG complexity trajectory as an early biomarker for autism	\$208,800	Q1.L.A	Boston Children's Hospital
Social evaluation in infants and toddlers	\$393,228	Q1.L.B	Yale University
Clinical and behavioral phenotyping of autism and related disorders	\$1,954,272	Q1.L.B	National Institutes of Health
Electrophysiological correlates of cognitive control in autism	\$127,805	Q1.L.B	University of California, Davis
Validity of an anxious subtype in autism spectrum disorders	\$53,270	Q1.L.B	University of California, Los Angeles
Foward outcome measurement of anxiety in youth with autism spectrum disorders	\$604,292	Q1.L.B	Yale University
Extraction of functional subnetworks in autism using nultimodal MRI	\$348,034	Q1.L.B	Yale University
Translational developmental neuroscience of autism	\$167,187	Q1.L.B	New York University School of Medicine
Development of face processing in infants with autism spectrum disorders	\$393,228	Q1.L.B	Yale University

Project Title	Funding	Strategic Plan Objective	Institution
The Autism Impact Measure: A new tool for treatment outcome measurement	\$1,355,047	Q1.L.B	University of Missouri
Neural predictors of language function after intervention in children with autism	\$181,103	Q1.L.B	University of California, Los Angeles
Restricted repetitive behavior in autism	\$391,678	Q1.L.B	University of North Carolina at Chapel Hill
Analyses of brain structure and connectivity in young children with autism	\$222,933	Q1.L.B	University of California, Davis
Perception of social and physical contingencies in infants with ASD	\$301,268	Q1.L.B	Emory University
Developmental social neuroscience in infants at-risk for autism	\$180,621	Q1.L.C	Yale University
Neural economics of biological substrates of valuation	\$364,716	Q1.L.C	Virginia Polytechnic Institute and State University
Early quantitative characterization of reciprocal social behavior	\$545,295	Q1.L.C	Washington University in St. Louis
Intersensory perception of social events: Typical and atypical development	\$134,355	Q1.L.C	Florida International University
A monkey model of naturally occurring low sociability	\$222,461	Q1.Other	Stanford University
Solid-state patch clamp platform to diagnose autism and screen for effective drug	\$196,247	Q1.S.A	Stanford University
Enabling use of blood spot cards for accurate high throughput Fragile X screening	\$1,142,346	Q1.S.A	Asuragen, Inc.
Evaluation of pupillary light reflex as biomarker of neurodevelopmental disorder	\$226,289	Q1.S.A	University of Missouri
Early detection of pervasive developmental disorders	\$924,542	Q1.S.A	University of Connecticut
Multimedia tool for psychology graduate student ASD assessment training	\$1	Q1.S.A	Virtual Reality Aids, Inc.
Development of a novel biomarker test for autism risk screening	\$363,789	Q1.S.A	Xen Biofluidx, Inc.
The use of interactive television in identifying autism in young children	\$217,440	Q1.S.A	University of Kansas Medical Center
Neurobehavioral Analysis Core	\$130,658	Q1.S.B	University of California, Davis
Intelligent data capture and assessment technology for developmental disabilities	\$721,082	Q1.S.B	Caring Technologies, Inc.
FMR 1-SLS: Improving fragile X diagnosis using amplification-free single locus ta	\$149,176	Q1.S.B	Pacific Biosciences Of California, Inc.
Early Identification of ASD: Translating eye Tracking into Practice	\$387,500	Q1.S.B	University of California, San Diego
Development of a prospective video-based measure to identify ASD risk in infancy	\$576,204	Q1.S.B	University of California, Davis
Comparative effectiveness of developmental-behavioral screening instruments	\$680,452	Q1.S.B	Tufts Medical Center

Project Title	Funding	Strategic Plan Objective	Institution
Intelligent data capture and assessment technology for developmental disabilities	\$322,828	Q1.S.B	Caring Technologies, Inc.
Reducing barriers to autism care in Latino children	\$179,521	Q1.S.C	Oregon Health & Science University
The impact of uncertainty in genome-wide testing for autism spectrum disorder	\$200,000	Q1.S.E	University of Pennsylvania
Gene dosage imbalance in neurodevelopmental disorders	\$662,379	Q1.S.E	Weis Center for Research - Geisinger Clinc
Novel metabolic biomarker for autism spectrum disorder	\$121,557	Q1.S.E	Greenwood Genetic Center
Amygdala connectivity in autism spectrum disorder	\$52,580	Q2.L.A	University of California, Davis
ACE Network: A longitudinal MRI study of infants at risk for autism	\$2,391,469	Q2.L.A	University of North Carolina at Chapel Hill
Pediatric brain imaging	\$2,140,977	Q2.L.A	National Institutes of Health
Longitudinal characterization of functional connectivity in autism	\$182,352	Q2.L.A	University of Utah
Quantifiable markers of ASD via multivariate MEG-DTI combination	\$257,169	Q2.L.B	University of Pennsylvania
ACE Center: Predicting risk and resilience in ASD through social visual engagement	\$226,068	Q2.L.B	Emory University
Taste, smell, and feeding behavior in autism: A quantitative traits study	\$541,983	Q2.Other	University of Rochester
Engrailed targets and the control of synaptic circuits in Drosophila	\$361,875	Q2.Other	University of Puerto Rico Medical Sciences Campus
Caspr2 as an autism candidate gene: A proteomic approach to function & structure	\$305,280	Q2.Other	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
Psychobiological investigation of the socioemotional functioning in autism	\$333,590	Q2.Other	Vanderbilt University Medical Center
Development of face processing expertise	\$339,118	Q2.Other	University of Toronto
Cognitive control of emotion in autism	\$102,004	Q2.Other	University of Pittsburgh
Neural markers of shared gaze during simulated social interactions in ASD	\$416,250	Q2.Other	Yale University
Cell adhesion molecules in CNS development	\$515,850	Q2.Other	The Scripps Research Institute - California
Elucidating the function of class 4 semaphorins in GABAergic synapse formation	\$325,130	Q2.Other	Brandeis University
Met signaling in neural development and circuitry formation	\$230,032	Q2.Other	University of Arizona
Role of neuronal migration genes in synaptogenesis and plasticity	\$53,942	Q2.Other	Weill Cornell Medical College
Kinetics of drug macromolecule complex formation	\$687,969	Q2.Other	University of California, San Diego
Structural and functional connectivity of large-scale brain networks in autism	\$168,978	Q2.Other	Stanford University

Project Title	Funding	Strategic Plan Objective	Institution
Statistical analysis of biomedical imaging data in curved pace	\$313,376	Q2.Other	University of North Carolina at Chapel Hill
Time Perception and Timed Performance in Autism	\$248,938	Q2.Other	Michigan State University
Neural synchronydysfunction of gamma oscillations in autism	\$254,470	Q2.Other	University of Colorado Denver
mpairments of theory of mind disrupt patterns of brain activity	\$308,160	Q2.Other	Massachusetts Institute of Technology
esting the hyperspecificity hypothesis: A neural theory f autism	\$189,836	Q2.Other	Children's Hospital of Philadelphia
he effects of autism on the sign language development f deaf children	\$53,942	Q2.Other	Boston University
he neural substrates of higher-level learning in autism	\$221,760	Q2.Other	University of California, Davis
Function of neurexins	\$461,977	Q2.Other	Stanford University
nfluence of attention and arousal on sensory abnormalities in ASD	\$186,000	Q2.Other	University of California, San Diego
Functional anatomy of face processing in the primate rain	\$1,555,641	Q2.Other	National Institutes of Health
Morphogenesis and function of the cerebral cortex	\$393,228	Q2.Other	Yale University
leuroimaging of top-down control and bottom-up rocesses in childhood ASD	\$371,791	Q2.Other	Georgetown University
Physiology of attention and regulation in children with SD and LD	\$327,380	Q2.Other	Seattle Children's Hospital
ynamic regulation of Shank3 and ASD	\$604,587	Q2.Other	Johns Hopkins University
maging signal transduction in single dendritic spines	\$449,208	Q2.Other	Max Planck Florida Corporation
neural model of fronto-parietal mirror neuron system lynamics	\$178,100	Q2.Other	University of Maryland, College Park
Study of health outcomes in children with autism and heir families	\$496,440	Q2.Other	Lewin Group, Inc.
nhibitory mechanisms for sensory map plasticity in erebral cortex	\$316,453	Q2.Other	University of California, Berkeley
leural mechanisms of tactile sensation in rodent omatosensory cortex	\$246,278	Q2.Other	University of California, Berkeley
erbal/non-verbal asynchrony in adolescents with high- unctioning autism	\$402,978	Q2.Other	Emerson College
ypical and pathological cellular development of the uman amygdala	\$369,600	Q2.Other	University of California, Davis
lovel computational methods for higher order diffusion IRI in autism	\$601,657	Q2.Other	University of Pennsylvania
leural basis of behavioral flexibility	\$347,607	Q2.Other	Mount Sinai School of Medicine

Project Title	Funding	Strategic Plan Objective	Institution
The social brain in schizophrenia and autism spectrum disorders	\$498,431	Q2.Other	Hartford Hospital
The neural bases of top-down attentional control in autism spectrum disorders	\$27,578	Q2.Other	City College of New York
Structural and functional neuroimaging of the auditory system in autism	\$157,938	Q2.Other	Children's Hospital of Philadelphia
Biology of non-coding RNAs associated with psychiatric disorders	\$430,144	Q2.Other	University of Southern California
Magnetoencephalographic studies of lexical processing and abstraction in autism	\$291,317	Q2.Other	University of Pennsylvania
Characterizing mechanistic heterogeneity across ADHD and autism	\$556,250	Q2.Other	Oregon Health & Science University
Electrophysiological response to executive control training in autism	\$89,670	Q2.Other	University of Washington
Behavioral, fMRI, and anatomical MRI investigations of attention in autism	\$49,214	Q2.Other	Massachusetts Institute of Technology
Multimodal imaging of social brain networks in ASD	\$148,945	Q2.Other	San Diego State University
Semaphorin4D and PlexinB1 mediate GABAergic synapse development in mammalian CNS	\$27,814	Q2.Other	Brandeis University
Pragmatics and semantics in autism spectrum disorder	\$27,487	Q2.Other	City University of New York Graduate School and University Center
Executive function in children with typical and atypical language abilities	\$493,697	Q2.Other	University of Wisconsin - Madison
Shank3 in synaptic function and autism	\$385,200	Q2.Other	Massachusetts Institute of Technology
Transcriptional control of inhibitory synapse formation	\$353,295	Q2.Other	Dana-Farber Cancer Institute
Development of the functional neural systems for face expertise	\$461,095	Q2.Other	University of California, San Diego
Integrative functions of the planum temporale	\$432,343	Q2.Other	University of California, Irvine
Analysis of Shank3 complete and temporal and spatial specific knockout mice	\$408,192	Q2.Other	Duke University
Engrailed genes and cerebellum morphology, spatial gene expression and circuitry	\$451,202	Q2.Other	Sloan-Kettering Institute for Cancer Research
Functional connectivity substrates of social and non- social deficits in ASD	\$719,629	Q2.Other	Massachusetts General Hospital
The microstructural basis of abnormal connectivity in autism	\$276,865	Q2.Other	University of Utah
Function and structure adaptations in forebrain development	\$520,098	Q2.Other	University of Southern California
The cognitive neuroscience of autism spectrum disorders	\$997,922	Q2.Other	National Institutes of Health
Cerebellar modulation of frontal cortical function	\$286,989	Q2.Other	University of Memphis

Project Title	Funding	Strategic Plan Objective	Institution
Sensory processing and integration in autism	\$524,517	Q2.Other	Albert Einstein College of Medicine of Yeshiva University
Genetic-imaging study of obsessive compulsive behavior in autism	\$360,826	Q2.Other	Brown University
Motor control and cerebellar maturation in autism	\$157,148	Q2.Other	University of Texas Southwestern Medical Center
Linking local activity and functional connectivity in autism	\$360,142	Q2.Other	San Diego State University
Networked cortical responses to movement associated with ASD	\$384,222	Q2.Other	University of Washington
Development of ventral stream organization	\$137,338	Q2.Other	University of Pittsburgh
Cell adhesion molecules in autism: A whole-brain study of genetic mouse models	\$448,320	Q2.Other	Cold Spring Harbor Laboratory
Behavioral and neural processing of faces and expressions in nonhuman primates	\$334,541	Q2.Other	Emory University
Project 4: Calcium signaling defects in autism (Pessah/Lein)	\$109,730	Q2.Other	University of California, Davis
Neuronal basis of vicarious reinforcement dysfunction in autism spectrum disorder	\$297,527	Q2.Other	Duke University
ACE Center: Ontogeny and neural basis of social visual engagement in monkeys	\$304,370	Q2.Other	Emory University
Brain bases of language deficits in SLI and ASD	\$583,471	Q2.Other	Massachusetts Institute of Technology
The impact of Pten signaling on neuronal form and function	\$375,706	Q2.Other	Dartmouth College
Regulation of spine morphogenesis by NrCAM	\$213,120	Q2.Other	University of North Carolina at Chapel Hill
Effect of paternal age on mutational burden and behavior in mice	\$177,600	Q2.Other	University of North Carolina at Chapel Hill
Evaluating the time-dependent unfolding of social interactions in autism	\$196,987	Q2.Other	University of Cincinnati
Auditory and integrative functions of the prefrontal cortex	\$374,016	Q2.Other	University of Rochester
Molecular mechanisms of the synaptic organizer alphaneurexin	\$373,200	Q2.Other	University of Michigan
Impact of SynGAP1 mutations on synapse maturation and cognitive development	\$661,570	Q2.Other	The Scripps Research Institute - Florida
Molecular dissection of calmodulin domain functions	\$310,222	Q2.Other	University of Iowa
The computational basis of theory of mind in the human brain	\$130,695	Q2.Other	California Institute of Technology
Modeling 5-HT-absorbing neurons in neuropathology of autism	\$200,400	Q2.Other	Albert Einstein College of Medicine of Yeshiva University
The striatal circuitry underlying autistic-like behaviors	\$31,975	Q2.Other	Duke University
Bayesian variable selection in generalized linear models with missing variables	\$229,953	Q2.Other	Hunter College (City University of New York)

Project Title	Funding	Strategic Plan Objective	Institution
Novel regulatory network involving non-coding role of an ASD candidate gene PTEN	\$240,480	Q2.Other	Albert Einstein College of Medicine of Yeshiva University
Learning and plasticity in the human brain	\$392,666	Q2.Other	National Institutes of Health
Controlling Interareal Gamma Coherence by Optogenetics, Pharmacology and Behavior	\$248,999	Q2.Other	Princeton University
Neurobehavioral investigation of tactile features in autism spectrum disorders	\$161,107	Q2.Other	Vanderbilt University Medical Center
EEG-based assessment of functional connectivity in autism	\$175,176	Q2.Other	Kennedy Krieger Institute
Monolingual and bilingual infants' sensitivity to agreement morphology in Spanish	\$137,605	Q2.Other	Florida International University
Vasopressin receptor polymorphism and social cognition	\$310,085	Q2.Other	Georgia State University
High throughput screen for small molecule probes for neural network development	\$388,800	Q2.Other	Johns Hopkins University
Investigating brain connectivity in autism at the whole-brain level	\$232,307	Q2.Other	Indiana University
Monoallelic expression in neurons derived from induced pluripotent stem cells	\$404,100	Q2.Other	Albert Einstein College of Medicine of Yeshiva University
Cellular density and morphology in the autistic temporal human cerebral cortex	\$352,346	Q2.Other	University of California, Davis
Social brain networks for the detection of agents and intentions	\$399,300	Q2.Other	Yale University
Mathematical cognition in autism: A cognitive and systems neuroscience approach	\$610,784	Q2.Other	Stanford University
Frontostriatal synaptic dysfunction in a model of autism	\$52,190	Q2.Other	Stanford University
Neural circuits that regulate social motivation in autism	\$150,542	Q2.Other	University of North Carolina at Chapel Hill
Computational characterization of language use in autism spectrum disorder	\$692,911	Q2.Other	Oregon Health & Science University
Wnt modulation as a treatment for autism spectrum disorders	\$184,568	Q2.Other	University of Iowa
Dissecting neural mechanisms integrating multiple inputs in C. elegans	\$477,449	Q2.Other	Salk Institute for Biological Studies
Role of neurexin in synapse formation and maintenance	\$53,942	Q2.Other	Stanford University
Assessment of glutamate delta-1 receptor in mental disorders	\$218,250	Q2.Other	Creighton University
Dysfunction of sensory inhibition in autism	\$258,134	Q2.Other	Johns Hopkins University
Functional connectivity in autism spectrum disorders	\$251,250	Q2.Other	Children's Hospital of Philadelphia
Optogenetic treatment of social behavior in autism	\$385,000	Q2.Other	University of California, Los Angeles
Statistical word learning in children with language disorders	\$29,355	Q2.Other	University of Wisconsin - Madison

Project Title	Funding	Strategic Plan Objective	Institution
NINDS comment: Disruption of Reelin biosynthesis by de novo missense mutations found in aut	\$32,615	Q2.Other	State University of New York Upstate Medical Center
Using Drosophila to characterize the molecular pathogenesis of autism	\$234,000	Q2.Other	Massachusetts Institute of Technology
The flexibility of individuation and ensemble representation	\$47,114	Q2.Other	Northwestern University
Cytoplasmic functions of Rbfox1, a candidate autism gene	\$231,000	Q2.Other	University of California, Los Angeles
Refining the Tourette Syndrome phenotype across diagnoses to aid gene discovery	\$417,271	Q2.Other	University of California, San Francisco
Molecular mechanisms of electrical synapse formation in vivo	\$90,000	Q2.Other	Fred Hutchinson Cancer Research Center
Investigating the role of neurexin-1 mutation in autism using human induced neuro	\$49,214	Q2.Other	Stanford University
Brain Systems Supporting Learning and Memory in Children with Autism	\$173,607	Q2.Other	Stanford University
The neurophysiology of sensory processing and multisensory integration in ASD	\$437,684	Q2.Other	Syracuse University
Artifacts as windows to other minds: Social reasoning in typical and ASD children	\$49,214	Q2.Other	Boston University
GABRB3 and placental vulnerability in ASD	\$523,820	Q2.S.A	Stanford University
Mitochondrial dysfunction due to aberrant mTOR- regulated mitophagy in autism	\$183,568	Q2.S.A	Columbia University
Autoimmunity against novel antigens in neuropsychiatric dysfunction	\$307,200	Q2.S.A	University of Pennsylvania
Prostaglandins and cerebellum development	\$356,400	Q2.S.A	University of Maryland, Baltimore
Sensitive periods in cerebellar development	\$32,941	Q2.S.A	University of Maryland, Baltimore
Project 3: Immune environment interaction and neurodevelopment	\$109,725	Q2.S.A	University of California, Davis
Investigation of sex differences associated with autism candidate gene, Cyfip1	\$32,413	Q2.S.B	University of California, Los Angeles
ACE Network: Multimodal developmental neurogenetics of females with ASD	\$2,670,192	Q2.S.B	Yale University
Foxp2 regulation of sex specific transcriptional pathways and brain development	\$88,128	Q2.S.B	University of Maryland, Baltimore
MRI biomarkers of patients with tuberous sclerosis complex and autism	\$720,276	Q2.S.D	Boston Children's Hospital
Phenotypic characterization of MECP2 mice	\$64,742	Q2.S.D	Children's Hospital of Philadelphia
mTOR modulation of myelination	\$178,659	Q2.S.D	Vanderbilt University Medical Center
A novel essential gene for human cognitive function	\$47,232	Q2.S.D	Harvard Medical School

Project Title	Funding	Strategic Plan Objective	Institution
Translation, synchrony, and cognition	\$375,588	Q2.S.D	New York University
Analysis of MEF2 in cortical connectivity and autism- associated behaviors	\$49,214	Q2.S.D	Harvard Medical School
Role of MEF2 and neural activity in cortical synaptic weakening and elimination	\$415,385	Q2.S.D	University of Texas Southwestern Medical Center
Neurobiological mechanism of 15q11-13 duplication autism spectrum disorder	\$367,304	Q2.S.D	Beth Israel Deaconess Medical Center
Genetic and developmental analyses of fragile X mental retardation protein	\$378,771	Q2.S.D	Vanderbilt University Medical Center
A longitudinal MRI study of brain development in fragile X syndrome	\$549,582	Q2.S.D	University of North Carolina at Chapel Hill
Revealing protein synthesis defects in fragile X syndrome with new chemical tools	\$337,091	Q2.S.D	Stanford University
MeCP2 modulation of BDNF signaling: Shared mechanisms of Rett and autism	\$303,067	Q2.S.D	University of Alabama at Birmingham
New approaches to local translation: SpaceSTAMP of proteins synthesized in axons	\$401,927	Q2.S.D	Dana-Farber Cancer Institute
Language development in fragile X syndrome	\$509,862	Q2.S.D	University of California, Davis
Olfactory abnormalities in the modeling of Rett syndrome	\$339,270	Q2.S.D	Johns Hopkins University
Dysregulation of protein synthesis in fragile X syndrome	\$1,089,880	Q2.S.D	National Institutes of Health
Presynaptic Fragile X Proteins	\$249,000	Q2.S.D	Drexel University
Synaptic phenotype, development, and plasticity in the fragile X mouse	\$379,329	Q2.S.D	University of Illinois at Urbana Champaign
Allelic choice in Rett syndrome	\$374,862	Q2.S.D	Winifred Masterson Burke Medical Research Institute
Predicting phenotypic trajectories in Prader-Willi syndrome	\$294,904	Q2.S.D	Vanderbilt University Medical Center
Grammatical development in boys with fragile X syndrome and autism	\$141,075	Q2.S.D	University of Wisconsin - Madison
Investigation of protocadherin-10 in MEF2- and FMRP-mediated synapse elimination	\$55,670	Q2.S.D	University of Texas Southwestern Medical Center
Dysregulation of mTOR signaling in fragile X syndrome	\$467,760	Q2.S.D	Albert Einstein College of Medicine of Yeshiva University
Mechanisms of motor skill learning in the fragile X mouse model	\$292,423	Q2.S.D	University of Nebraska Medical Center
Novel candidate mechanisms of fragile X syndrome	\$249,000	Q2.S.D	University of Michigan
The role of Fox-1 in neurodevelopment and autistic spectrum disorder	\$145,757	Q2.S.D	University of California, Los Angeles
BDNF and the restoration of synaptic plasticity in fragile X and autism	\$449,134	Q2.S.D	University of California, Irvine
The microRNA pathway in translational regulation of neuronal development	\$340,304	Q2.S.D	University of Massachusetts Medical School

Project Title	Funding	Strategic Plan Objective	Institution
Genotype-phenotype relationships in fragile X families	\$565,457	Q2.S.D	University of California, Davis
Mechanisms of mGluR5 function and dysfunction in mouse autism models	\$393,841	Q2.S.D	University of Texas Southwestern Medical Center
MicroRNAs in synaptic plasticity and behaviors relevant to autism	\$131,220	Q2.S.D	Massachusetts General Hospital
The role of MeCP2 in Rett syndrome	\$344,213	Q2.S.D	University of California, Davis
A family-genetic study of autism and fragile X syndrome	\$593,966	Q2.S.D	Northwestern University
Longitudinal MRI study of brain development in fragile X	\$748,506	Q2.S.D	Stanford University
Cortactin and spine dysfunction in fragile X	\$32,875	Q2.S.D	University of California, Irvine
Modulation of RhoA signaling by the mRNA binding protein hnRNPQ1	\$30,912	Q2.S.D	Emory University
Translational regulation of adult neural stem cells	\$359,977	Q2.S.D	University of Wisconsin - Madison
Role of Sema7A in functional organization of neocortex	\$366,120	Q2.S.D	Mount Sinai School of Medicine
Pleiotropic roles of dyslexia genes in neurodevelopmental language impairments	\$36,724	Q2.S.D	Yale University
Mechanism of UBE3A imprint in neurodevelopment	\$7,869	Q2.S.D	University of California, Davis
Emergence and stability of autism in fragile X syndrome	\$343,680	Q2.S.D	University of South Carolina
Phagocytosis is misregulated in a Drosophila model of Fragile X syndrome	\$47,232	Q2.S.D	Columbia University
Astrocyte function in genetic mouse models of autism spectrum disorders	\$394,063	Q2.S.D	Cleveland Clinic Lerner College of Medicine, Case Western Reserve University
Mechanisms Underlying the Cerebellar Contribution to Autism in Mouse Models of Tu	\$190,458	Q2.S.D	Boston Children's Hospital
Self-Regulation and Sleep in Children At Risk for Autism Spectrum Disorders	\$249,000	Q2.S.E	Purdue University
Molecular mechanisms linking early life seizures, autism and intellectual disability	\$313,576	Q2.S.E	University of Colorado Denver
Early life seizures disrupt critical period plasticity	\$429,559	Q2.S.E	University of Pennsylvania
Neuroendocrine regulation of metabolism and neurocognition	\$355,088	Q2.S.E	National Institutes of Health
Treatment of medical conditions among individuals with autism spectrum disorders	\$488,568	Q2.S.E	National Institutes of Health
Selective disruption of hippocampal dentate granule cells in autism: Impact of PT	\$396,897	Q2.S.E	Cincinnati Children's Hospital Medical Center
Neurobiology of aggression co-morbidity in mouse model of idic15 autism	\$261,000	Q2.S.E	Beth Israel Deaconess Medical Center
Neuroimmunologic investigations of autism spectrum disorders (ASD)	\$162,856	Q2.S.F	National Institutes of Health

Project Title	Funding	Strategic Plan Objective	Institution
Mutations associated with carnitine deficiency: risk factor for regression in ASD	\$78,650	Q2.S.F	Baylor College of Medicine
Animal model of genetics and social behavior in autism spectrum disorders	\$658,361	Q2.S.G	Duke University
ACE Center: Genetic and genomic analyses to connect genes to brain to cognition in ASD	\$241,951	Q2.S.G	University of California, Los Angeles
A neuroimaging study of twin pairs with autism	\$599,326	Q2.S.G	Stanford University
Development of vision and attention in typical and ASD individuals	\$305,682	Q2.S.G	Brown University
Characterizing the genetic systems of autism through multi-disease analysis	\$503,306	Q2.S.G	Harvard Medical School
Genome-wide identification of variants affecting early human brain development	\$590,292	Q2.S.G	University of North Carolina at Chapel Hill
ACE Center: Neuroimaging signatures of autism: Linking brain function to genes and behavior	\$178,857	Q2.S.G	University of California, Los Angeles
Biological determinants of brain variation in autism	\$652,672	Q2.S.G	University of Wisconsin - Madison
The genomic bridge project (GBP)	\$158,206	Q2.S.G	Massachusetts General Hospital
Identification of candidate genes at the synapse in autism spectrum disorders	\$168,245	Q2.S.G	Yale University
A family-genetic study of language in autism	\$308,419	Q2.S.G	Northwestern University
High throughput sequencing of autism spectrum disorder (ASD) endophenotypes	\$39,432	Q2.S.G	Baylor College of Medicine
Early autism risk longitudinal investigation (EARLI) network	\$411,571	Q3.L.A	Drexel University
2/3-Sequencing autism spectrum disorder extended pedigrees	\$222,480	Q3.L.B	University of Washington
1/3-Sequencing autism spectrum disorder extended pedigrees	\$286,240	Q3.L.B	University of Utah
Novel statistical methods for DNA sequencing data, and applications to autism	\$314,312	Q3.L.B	Columbia University
Next generation gene discovery in familial autism	\$644,126	Q3.L.B	University of Washington
Autism genetics: Homozygosity mapping and functional validation	\$150,000	Q3.L.B	Boston Children's Hospital
Genetic epidemiology of complex traits	\$589,154	Q3.L.B	National Institutes of Health
Complex genetic architecture of chromosomal aberrations in autism	\$92,917	Q3.L.B	Massachusetts General Hospital
Investigation of DUF1220 domains in human brain function and disease	\$361,544	Q3.L.B	University of Colorado Denver
3/3-Sequencing autism spectrum disorder extended pedigrees	\$153,600	Q3.L.B	University of Pennsylvania

Project Title	Funding	Strategic Plan Objective	Institution
Hypocholesterolemic autism spectrum disorder	\$45,647	Q3.L.B	National Institutes of Health
Developing new statisical methods to detect variants involved in complex disease	\$434,485	Q3.L.B	National Institutes of Health
Assisted reproductive technologies and increased autism risk	\$192,000	Q3.L.C	Columbia University
Gene-environment interactions in an autism birth cohort	\$6,537,537	Q3.L.D	Columbia University
Project 1: Epidemiology and the environment in autism (Hertz-Picciotto)	\$158,613	Q3.L.D	University of California, Davis
The roles of environmental risks and GEX in increasing ASD prevalence	\$532,325	Q3.L.D	Yale University
Parental age and schizophrenia susceptibility	\$308,000	Q3.L.D	University of California, Los Angeles
Population-based autism genetics & environment study	\$600,532	Q3.L.D	Mount Sinai School of Medicine
ACE Network: Multigenerational Familial and Environmental Risk for Autism (MINERVA) Network	\$948,404	Q3.L.D	Mount Sinai School of Medicine
FOXP2-regulated signaling pathways critical for higher cognitive functions	\$291,826	Q3.Other	University of Texas Southwestern Medical Center
Non-coding RNAs in autism	\$246,000	Q3.Other	University of Southern California
4/4 The Autism Sequencing Consortium: Autism gene discovery in >20,000 exomes	\$759,778	Q3.S.A	University of California, San Francisco
1/4-The Autism Sequencing Consortium: Autism gene discovery in >20,000 exomes	\$817,786	Q3.S.A	Mount Sinai School of Medicine
2/4-The Autism Sequencing Consortium: Autism gene discovery in >20,000 exomes	\$483,807	Q3.S.A	Broad Institute, Inc.
Rapid phenotyping for rare variant discovery in autism	\$661,281	Q3.S.A	University of California, Los Angeles
3/4 - The Autism Sequencing Consortium: Autism gene discovery in >20,000 exomes	\$276,478	Q3.S.A	University of Pittsburgh
Sporadic mutations and autism spectrum disorders	\$713,231	Q3.S.A	University of Washington
Autism genetics: Homozygosity mapping and functional validation	\$735,107	Q3.S.A	Boston Children's Hospital
The CHARGE study: childhood autism risks from genetics and the environment	\$1,151,250	Q3.S.C	University of California, Davis
Prenatal and neonatal biologic markers for autism	\$725,197	Q3.S.C	Kaiser Foundation Research Institute
The role of germline mutation and parental age in autism spectrum disorders	\$743,939	Q3.S.C	University of California, San Diego
Autism risk, prenatal environmental exposures, and pathophysiologic markers	\$1,759,913	Q3.S.C	University of California, Davis
ACE Network: Autism Genetics, Phase II: Increasing representation of human diversity	\$162,535	Q3.S.D	University of California, Los Angeles
ACE Network: Autism Genetics, Phase II: Increasing representation of human diversity	\$3,005,916	Q3.S.D	University of California, Los Angeles

Project Title	Funding	Strategic Plan Objective	Institution	
In utero antidepressant exposures and risk for autism	\$343,560	Q3.S.H	Massachusetts General Hospital	
Epidemiological research on autism in Jamaica - Phase II	\$607,366	Q3.S.H	University of Texas Health Science Center at Houston	
Neonatal biomarkers in extremely preterm babies predict childhood brain disorders	\$3,655,744	Q3.S.H	Boston Medical Center	
Gestational metabolic conditions and autism	\$77,000	Q3.S.H	University of California, Davis	
Investigating the gut microbiome for novel therapies and diagnostics for autism	\$558,136	Q3.S.I	California Institute of Technology	
Environment, the perinatal epigenome, and risk for autism and related disorders	\$1,400,550	Q3.S.J	Johns Hopkins University	
Cell specific genomic imprinfing during cortical development and in mouse models	\$308,216	Q3.S.J	Harvard University	
Exploring interactions between folate and environmental risk factors for autism	\$153,615	Q3.S.J	University of California, Davis	
Methylomic and genomic impacts of organic pollutants in Dup15q syndrome	\$338,560	Q3.S.J	University of California, Davis	
Project 2: Perinatal epigenetic signature of environmental exposure	\$105,416	Q3.S.J	University of California, Davis	
Epigenetic and transcriptional dysregulation in autism spectrum disorder	\$748,775	Q3.S.J	University of California, Los Angeles	
Mechanisms of valproic acid-induced neurodevelopmental and behavioral defects	\$302,269	Q3.S.J	University of Maryland, Baltimore	
In vivo function of neuronal activity-induced MeCP2 phosphorylation	\$277,792	Q3.S.J	University of Wisconsin - Madison	
Human neurobehavioral phenotypes associates with the extended PWS/AS domain	\$587,398	Q3.S.J	Baylor College of Medicine	
The role of vasopressin in the social deficits of autism	\$235,500	Q4.L.A	Stanford University	
ACE Center: Augmenting language interventions for ASD: A translational approach	\$269,087	Q4.L.A	University of California, Los Angeles	
Piloting treatment with insulin-like growth Factor-1 in Phelan-McDermid syndrome	\$366,363	Q4.L.A	Mount Sinai School of Medicine	
ACE Network: Study of Oxytocin in Autism to Improve Reciprocal Social Behaviors (SOARS-B)	\$2,435,695	Q4.L.A	University of North Carolina at Chapel Hill	
Pivotal response treatment for infants at risk for ASD: A pilot intervention	\$79,900	Q4.L.B	Yale University	
ACE Center: Targeting joint engagement in infants at risk for ASD: Integrating treatment with biomarkers	\$269,695	Q4.L.B	University of California, Los Angeles	
1/4-RUPP Autism Network: Guanfacine for the treatment of hyperactivity in PDD	\$1	Q4.L.C	Indiana University-Purdue University Indianapolis	
3/4-RUPP Autism Network: Guanfacine for the treatment of hyperactivity in PDD	\$200,372	Q4.L.C	University of California, Los Angeles	

Project Title	Funding	Strategic Plan Objective	Institution
2/4-RUPP Autism Network: Guanfacine for the treatment of hyperactivity in PDD	\$171,791	Q4.L.C	Seattle Children's Hospital
4/4-RUPP Autism Network: Guanfacine for the treatment of hyperactivity in PDD	\$168,533	Q4.L.C	Yale University
Preschool reading and language interventions for children with autism	\$279,933	Q4.L.D	University of Washington
Animal-assisted intervention for children with autism spectrum disorder	\$57,383	Q4.L.D	Purdue University
Software to enrich the noun lexicons and lexical learning of children with autism	\$757,099	Q4.L.D	Laureate Learning Systems, Inc.
ACE Center: Changing developmental trajectories through early treatment	\$642,931	Q4.L.D	Emory University
Adapting cognitive enhancement therapy for ASD	\$211,536	Q4.Other	University of Pittsburgh
Adaptive response technology for autism spectrum disorders intervention	\$359,376	Q4.Other	Vanderbilt University Medical Center
Atypical effects of reinforcement procedures in ASD	\$250,000	Q4.Other	University of Massachusetts Medical School
Neuroactive steroid GABAA receptor positive modulators for fragile X syndrome	\$162,500	Q4.Other	Sage Therapeutics, Inc.
Treatment of Autism Symptoms in Children (TASC): Initial RCT with active control	\$369,600	Q4.Other	University of California, Los Angeles
Peers, play and performance to improve social interaction in autism	\$234,000	Q4.Other	Vanderbilt University Medical Center
Fast-as -new experimental medicine studies: Fast-fail trials in autism spectrum	\$2,312,083	Q4.Other	University of California, Los Angeles
Assessing interactive avatars for use with children with autism	\$72,883	Q4.Other	Carnegie Mellon University
Wireless EEG system for training attention and eye movement in ASD	\$214,722	Q4.Other	University of California, San Diego
The effects of intranasal oxytocin on social cognition and neural activity	\$421,790	Q4.S.A	Emory University
Functional analysis of rare variants in genes associated with autism	\$146,625	Q4.S.B	Yale University
Effects of chronic intranasal oxytocin	\$526,020	Q4.S.B	University of California, Davis
Roles of oxytocin and vasopressin in brain	\$1,496,471	Q4.S.B	National Institutes of Health
Oxytocin receptors and social behavior	\$422,748	Q4.S.B	Emory University
Characterization of the schizophrenia-associated 3q29 deletion in mouse	\$528,118	Q4.S.B	Emory University
Neurobiological signatures of social dysfunction and repetitive behavior	\$374,400	Q4.S.B	Vanderbilt University Medical Center
Reversing BDNF impairments in Rett mice with TRPC channel activators	\$256,375	Q4.S.B	University of Alabama at Birmingham

Project Title	Funding	Strategic Plan Objective	Institution	
Insight into MeCP2 function raises therapeutic possibilities for Rett syndrome	\$277,269	Q4.S.B	University of California, San Francisco	
Animal model of speech sound processing in autism	\$239,188	Q4.S.B	University of Texas at Dallas	
Serotonin, autism, and investigating cell types for CNS disorders	\$235,867	Q4.S.B	Washington University in St. Louis	
Identifying therapeutic targets for autism using Shank3-deficient mice	\$466,151	Q4.S.B	Mount Sinai School of Medicine	
Modeling the serotonin contribution to autism spectrum disorders	\$222,643	Q4.S.B	Vanderbilt University Medical Center	
A novel translational model of autism spectrum disorder	\$267,750	Q4.S.B	Emory University	
Studies of genetic and metabolic disorders, autism and premature aging	\$1,446,354	Q4.S.B	National Institutes of Health	
Mechanisms of stress-enhanced aversive conditioning	\$366,000	Q4.S.B	Northwestern University	
Vicarious neural activity, genetic differences and social fear learning	\$53,942	Q4.S.B	Oregon Health & Science University	
Tooth pulp as a source for neuronal precursor cells to study neurogenetic disorders	\$217,125	Q4.S.B	University of Tennessee Health Science Center	
Neuroligin function in vivo: Implications for autism and mental retardation	\$373,032	Q4.S.B	University of Texas Southwestern Medical Center	
Novel genetic models of autism	\$415,328	Q4.S.B	University of Texas Southwestern Medical Center	
Striatal synaptic abnormalities in models of autism	\$381,600	Q4.S.B	University of Texas Southwestern Medical Center	
Training in translational social neuroscience	\$98,163	Q4.S.B	Emory University	
Exploring the neuronal phenotype of autism spectrum disorders using induced pluri	\$180,391	Q4.S.B	Stanford University	
Investigating the role of CNTNAP2 gene in vocal learning in mutant songbirds	\$197,609	Q4.S.B	University of Massachusetts Medical School	
Training outpatient clinicians to deliver cognitive behavior therapy to children	\$211,113	Q4.S.C	University of Colorado Denver	
Testing direct effects of soy daidzein on fragile X phenotypes	\$75,250	Q4.S.C	University of Wisconsin - Madison	
Effects of therapeutic horseback riding on children and adolescents with autism spectrum disorders	\$285,797	Q4.S.C	University of Colorado Denver	
Multisensory integration and temporal processing in autism	\$44,080	Q4.S.C	Vanderbilt University	
Therapy management software for naturalistic model- based behavioral interventions	\$347,991	Q4.S.C	Experiad, LLC.	
3/5-Randomized trial of parent training for young children with autism	\$215,249	Q4.S.D	University of Rochester	
3/5-Randomized trial of parent training for young children with autism	\$65,595	Q4.S.D	University of Rochester	

Project Title	Funding	Strategic Plan Objective	Institution	
4/5-Randomized trial of parent training for young children with autism	\$221,569	Q4.S.D	Indiana University-Purdue University Indianapolis	
1/5-Randomized trial of parent training for young children with autism	\$242,996	Q4.S.D	Yale University	
2/5-Randomized trial of parent training for young shildren with autism	\$204,169	Q4.S.D	The Ohio State University	
5/5-Randomized trial of parent training for young shildren with autism	\$226,771	Q4.S.D	University of Pittsburgh	
ACE Network: Intervention effects of intensity and lelivery style for toddlers with ASD	\$3,118,971	Q4.S.D	University of California, Davis	
Brain Imaging Markers of Response to Intervention in oddlers with Autism	\$142,893	Q4.S.F	University of North Carolina at Chapel Hill	
2/3-Multisite RCT of early intervention for spoken communication in autism	\$350,924	Q4.S.F	University of Rochester	
1/3-Multisite RCT of early intervention for spoken communication in autism	\$515,167	Q4.S.F	University of California, Los Angeles	
3/3-Multisite RCT of early intervention for spoken communication in autism	\$442,594	Q4.S.F	Kennedy Krieger Institute	
Optimizing initial communication for children with autism	\$333,168	Q4.S.G	University of Massachusetts Medical School	
Contingency analyses of observing and attending in ntellectual disabilities	\$261,988	Q4.S.G	University of Massachusetts Medical School	
Peer-mediated ACC intervention for children with autism: iffects on communication	\$308,485	Q4.S.G	University of Kansas	
ACE Network: Adaptive interventions for minimally verbal children with ASD in the community	\$2,546,852	Q4.S.G	University of California, Los Angeles	
ACE Center: Inter-regional connectivity in the speech network of minimally verbal children	\$376,136	Q4.S.G	Boston University	
Electronic location reporting for individuals with cognitive isabilities	\$704,478	Q4.S.H	Intellispeak, LLC	
Effectiveness and implementation of a mental health intervention for ASD	\$627,203	Q5.L.A	University of California, San Diego	
Optimization of fidelity procedures for pivotal response raining in autism	\$186,772	Q5.L.A	Children's Hospital Research Center	
Developing the autism model of implementation for ASD community providers	\$185,333	Q5.L.A	San Diego State University	
eaching skills to toddlers: A program for caregivers	\$216,694	Q5.L.A	University of Connecticut	
Parenting your young child with autism: A web-based utorial	\$435,651	Q5.L.A	Center for Psychological Consultation	
Partners in Schools: A program for parents and teachers f children with autism	\$47,114	Q5.L.A	University of Pennsylvania	
Developmental Disabilities Dentistry Online	\$410,983	Q5.L.E	Praxis, Inc.	

Project Title	Funding	Strategic Plan Objective	Institution	
Evaluating the effects of autism insurance mandates	\$690,492	Q5.Other	University of Pennsylvania	
Family outcomes in autism spectrum disorders	\$527,329	Q5.Other	University of Wisconsin - Madison	
The effects of State and Federal insurance policies on quality of care for autism	\$406,574	Q5.S.A	Pennsylvania State University	
Oo access barriers to autism care persist despite autism nsurance mandate?	\$273,622	Q5.S.A	Pennsylvania State University	
Supporting teens with autism on relationshiPS	\$270,180	Q6.L.A	Danya International, Inc.	
Service transitions among youth with autism spectrum lisorders	\$203,915	Q6.L.B	Washington University in St. Louis	
autism spectrum disorder: Birth cohort 1976-2000, pidemiology and adult status	\$542,540	Q6.Other	Mayo Clinic	
Autism in older adults: A pilot, descriptive study	\$71,040	Q6.S.A	University of North Carolina at Chapel Hill	
tisk and resiliency for youth with autism during the ransition to adulthood	\$142,194	Q6.S.A	Vanderbilt University Medical Center	
Clinical algorithm for identifying adult autism	\$240,000	Q6.S.C	University of Pennsylvania	
n open resource for autism iPSCs and their derivatives	\$545,118	Q7.D	Children's Hospital of Orange County	
model integrated data management system for multi- isciplinary autism research	\$346,748	Q7.H	Prometheus Research, LLC	
lational Database on Autism Research	\$44,000	Q7.H	Center for Information Technology	
o support the ongoing operations of NDAR by providing irection, management and	\$635,431	Q7.H	Omnitec Solutions, Inc.	
Children with autism spectrum disorders in developing ountries	\$30,000	Q7.J	Wayne State University	
biological Analysis Core	\$121,545	Q7.J	University of California, Davis	
CE Center: Research Education and Training Core	\$220,437	Q7.K	University of California, Los Angeles	
CE Center: Research Training and Education Core	\$48,686	Q7.K	Emory University	
nterdisciplinary training for autism researchers	\$250,479	Q7.K	University of California, Davis	
013 Cerebellum Gordon Research Conference	\$25,000	Q7.K	Gordon Research Conferences	
CE Center: Research, training and education	\$111,353	Q7.K	Boston University	
esearch Participation Core	\$259,801	Q7.Other	University of Wisconsin - Madison	
dministrative Core/Leadership	\$90,193	Q7.Other	University of California, Davis	
ffice of the Scientific Director	\$8,561,517	Q7.Other	National Institutes of Health	
acility Core: Analytical and Environmental Chemistry	\$110,972	Q7.Other	University of California, Davis	
ore D: Clinical Neuroscience Services	\$200,547	Q7.Other	Vanderbilt University Medical Center	
CE Center: Clinical Assessment Core	\$292,879	Q7.Other	Emory University	
CE Center: Data Management and Analysis Core	\$40,386	Q7.Other	Emory University	

Project Title	Funding	Strategic Plan Objective	Institution
Fast-as -new experimental medicine studies: Fast-fail trials in autism spectrum	\$172,388	Q7.Other	University of California, Los Angeles
ACE Center: Diagnostic and Recruitment Core	\$225,220	Q7.Other	University of California, Los Angeles
Core E: Participant Recruitment & Assessment Services	\$269,520	Q7.Other	Vanderbilt University Medical Center
Core A: Administrative Services	\$247,305	Q7.Other	Vanderbilt University Medical Center
ACE Center: Administration and data management	\$226,572	Q7.Other	Boston University
Computational tools to analyze SNP data from patients with mental illness	\$598,866	Q7.Other	Partek, Inc.
Anatomical and functional modularity of the cerebral cortex	\$8,000	Q7.Other	University of Louisville
ACE Center: Administrative Core	\$199,003	Q7.Other	University of California, Los Angeles
ACE Center: Neuroimaging/Neurophysiology Core	\$181,369	Q7.Other	University of California, Los Angeles